APPLIED MATHEMATICS AND STATISTICS LABORATORIES # STANFORD UNIVERSITY CALIFORNIA S AD NO. FOSTER'S MARKOV CHAIN THEOREMS IN CONTINUOUS TIME BY RUPERT G. MILLER, JR. TECHNICAL REPORT NO. 88 PREPARED UNDER CONTRACT Nonr-225(52) (NR-342-022) FOR OFFICE OF NAVAL RESEARCH #### FOSTER'S MARKOV CHAIN THEOREMS IN CONTINUOUS TIME Ъу Rupert G. Miller, Jr. TECHNICAL REPORT NO. 88 April 19, 1963 PREPARED UNDER CONTRACT Nonr-225(52) (NR-342-022) FOR OFFICE OF NAVAL RESEARCH Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government APPLIED MATHEMATICS AND STATISTICS LABORATORIES STANFORD UNIVERSITY STANFORD, CALIFORNIA #### FOSTER'S MARKOV CHAIN THEOREMS IN CONTINUOUS TIME by Rupert G. Miller, Jr. #### Introduction Let $\{X_t\}$, $t \in T = [0,\infty)$, be an irreducible Markov chain in continuous time with state space $I = \{0,1,2,\ldots\}$. The stationary transition probability matrix $P(t) = (p_{ij}(t))$ is assumed to be measurable and satisfy $$p_{ij}(t) \ge 0, \quad \sum_{j} p_{ij}(t) \le 1, \qquad i, j \in I ,$$ $$(1.1)$$ $$P(t+s) = P(t) P(s), P(O+) = I ,$$ for all t, s ϵ T. In addition, the states are assumed to be stable; i.e., $$0 > p_{ii}'(0) = \lim_{t \downarrow 0} \frac{p_{ii}(t)-1}{t} = q_{ii} = -q_{i} > -\infty, \quad i \in I,$$ $$0 < p_{ij}'(0) = \lim_{t \downarrow 0} \frac{p_{ij}(t)}{t} = q_{ij} < +\infty, \quad i \neq j \in I$$ The matrix $Q = (q_{ij})$ is called the Q-matrix or infinitesimal generator matrix of the process, and it is assumed to be conservative, i.e., $\sum_j q_{ij} = 0, \ i \in I.$ For simplicity, this type of Markov chain will be referred to as a simple continuous time Markov chain (SCMC). A thorough treatise on the properties of a SCMC is contained in [1]. In [8], [9] the solutions to the equations y = 0 were investigated. These stationarity equations are obtained by setting the derivatives equal to zero in the forward Kolmogorov equations P'(t) = P(t)Q, and are the continuous time analog of the stationarity equations xP = x for a discrete time Markov chain (with stationary one-step transition probability matrix $P = (p_{ij})$). In particular, it was shown that, under the minimality assumption described below, a NSC for the SCMC to be positive recurrent is for the equations yQ = 0 to have a convergent, positive solution $y = (y_0, y_1, y_2, \dots)$. The solution is unique (up to a multiplicative constant): (1.3) $$y_i = \pi_i = \lim_{t \to \infty} p_{ii}(t)$$, $i \in I$. In [9] yQ = 0 was also shown to have a unique, positive solution in a null recurrent chain, and for any recurrent chain (positive or null) the relationship between the unique stationary measures of the SCMC and its imbedded discrete time Markov chain was obtained. The analogous stationarity theorem for positive recurrent chains in discrete time is due to Foster [4] with an earlier, less general version being given by Feller [3], p. 325 (see also Chung [1], p. 35). Foster also gives three additional theorems on conditions for recurrence, ergodicity, etc. in a discrete time chain. The purpose of this paper is to extend these additional theorems to continuous time. The minimality assumption referred to above which is necessary for the validity of the preceding theorems in continuous time is: Minimality Assumption: The SCMC is uniquely defined by its Q-matrix; i.e., the minimal process is an honest process (see [1] for details). It will be necessary to impose this assumption in Theorem 2 below but will not be needed in Theorem 1. It excludes from consideration those processes which can explode to $+\infty$ in finite time. Various necessary and sufficient conditions on the Q-matrix for the minimality assumption to hold have been derived and can be found elsewhere. For reference, see Chung [1] and Reuter [10]. #### 2. Results In the proofs of this section it will be necessary to refer to the imbedded chain of the SCMC. This is the irreducible (but possibly periodic) discrete time Markov chain $\{X_n\}$, $n=0,1,2,\cdots$, with stationary transition probability matrix $P=(p_{1,i})$ where $$p_{ij} = q_{ij}/q_i$$, $i \neq j \in I$, (2.1) $p_{ij} = 0$, $i \in I$. The imbedded Markov chain $\{X_n\}$ simply records the sequence of states through which the SCMC passes without regard to the amount of time required for the transitions. Theorem 1: (a) The SCMC $\{X_t\}$ is recurrent if there exists a sequence $z=(z_0,z_1,z_2,\ldots)$ such that (i) $z_n\to +\infty$ as $n\to +\infty$ and (ii) $Qz\le 0$ except for the first coordinate. (b) A NSC for the SCMC $\{X_t\}$ to be non-recurrent is that there exist a bounded non-constant sequence $z=(z_0,z_1,z_2,\ldots)$ such that Qz=0 except for the first coordinate. <u>Proof:</u> The proofs of (a) and (b) are immediate and can be given together. The system of inequalities or equalities $Qz \le 0$, = 0 can be written as (2.2) $$\sum_{j=0,\neq i}^{\infty} q_{ij}z_{j} \leq j = q_{i}z_{i}, \qquad i \neq 0 \in I.$$ Division by q, yields (2.3) $$\sum_{j=0}^{\infty} p_{ij} z_{j} \leq z_{i} , \quad i \neq 0 \in I ,$$ where P = (p_{ij}) is the transition matrix of the imbedded chain. Under the conditions on z in (a) the system of inequalities (2.3) implies recurrence for the imbedded chain by Theorem 5 of [4]. Similarly, under the conditions on z in (b) the system of equations (2.3) is a NSC for the transience of the imbedded chain by Theorem 4 of [4]. But the recurrence or transience of the imbedded chain is identical to the recurrence or non-recurrence, respectively, of the SCMC. Recurrence is independent of the time component. The term "non-recurrent" rather than "transient" is used here in dealing with a SCMC because of the two possible types of path function behavior. A SCMC can be non-explosive (i.e., satisfy the minimality assumption) but have transient states in the sense that a return to each has probability less than one, or it can be explosive and reach $+\infty$ in finite time with positive probability. In both cases the states of the imbedded chain are transient. Note that it is not necessary to impose the minimality assumption in Theorem 1. The fact that the imbedded chain has not been defined beyond the first infinity does not cause any difficulty. Should Qz=0 not have a bounded non-constant solution or $Qz\leq 0$ have a solution whose coordinates tend to $+\infty$, the imbedded chain is recurrent, and by necessity the SCMC is uniquely defined. Should Qz = 0 have a bounded non-constant solution, the imbedded chain is transient; the SCMC is then either explosive or non-explosive and transient. This theorem, particularly part (b), is motivated by the following consideration. Let f_{i0} be the probability that if the SCMC (or its imbedded chain) starts in state i, it reaches state 0 eventually. If f_{00} is defined to be 1, then the f_{i0} satisfy the equations (2.4) $$\sum_{j=0}^{\infty} p_{ij} f_{j0} = f_{i0} , \qquad i \neq 0 \in I .$$ In a recurrent chain $f_{10} \equiv 1$, but in a transient chain $f_{10} \neq 1$, so the f_{10} constitute a bounded, non-constant solution to (2.4). In an earlier paper [6] Karlin and McGregor extended Foster's Theorems 4 and 5 to birth and death processes. Utilizing the special structure of these processes they also established necessity in part (a). This does not seem to be true in general (see [4]). Theorem 2: Under the minimality assumption a NSC that the SCMC be positive recurrent is that the inequalities (2.5) $$\sum_{j=0}^{\infty} q_{ij} z_{j} \leq -1 , \qquad i \neq 0 \in I ,$$ (i.e., $Qz \le -1$ except for the first coordinate) have a non-negative solution z which satisfies $$(2.6) \qquad \qquad \sum_{j=1}^{\infty} q_{0,j} z_{j} < + \infty$$ (i.e., $$|(Qz)_0| < + \infty$$). <u>Proof:</u> (Necessity) Let m_{10} be the expected time it takes the SCMC to reach state 0 from state $i \neq 0 \in I$; $m_{00} = 0$. For a positive recurrent SCMC $m_{10} < + \infty$. These expected first-passage times satisfy the equations (2.7) $$m_{i0} = \frac{1}{q_i} + \sum_{j=0}^{\infty} p_{ij} m_{j0}$$, $i \neq 0 \in I$, where the first term on the right is the expected length of time spent in state 1 and the second term is the expected time to reach 0 after the process leaves state 1. Multiplication of (2.7) by q_1 and rearrangement of terms yields (2.5) with equality for $z_1 = m_{10}$. Since the chain is positive recurrent, the mean recurrence time to state 0 is finite; i.e., (2.8) $$\frac{1}{q_0} + \sum_{j=0}^{\infty} p_{0j}^{m_{j0}} < + \infty ,$$ which implies (2.6). (Sufficiency) Rearrangement of terms in (2.5) gives Without loss of generality assume $z_0 = 0$. Consider the iterative inequality obtained by applying $P^n = (p_{i,i})$ to z: $$\sum_{j=0}^{\infty} p_{i,j}^{(n)} z_j = \sum_{k=0}^{\infty} p_{i,k}^{(n-1)} \sum_{j=0}^{\infty} p_{k,j}^{2} z_j$$ $$(2.10) \leq \sum_{k=1}^{\infty} p_{ik}^{(n-1)} (z_k - \frac{1}{q_k}) + p_{i0}^{(n-1)} \sum_{j=0}^{\infty} p_{0j}^{z_j}$$ $$= \sum_{k=0}^{\infty} p_{ik}^{(n-1)} z_k - \sum_{k=0}^{\infty} p_{ik}^{(n-1)} \frac{1}{q_k} + p_{i0}^{(n-1)} (\frac{1}{q_0} + \lambda)$$ where $\lambda = \sum_{j=0}^{\infty} p_{0j} z_j < +\infty$ by (2.6). The (n-1)-fold interation of this inequality produces the following inequality: $$(2.11) 0 \le \sum_{j=0}^{\infty} p_{ij}^{(n)} z_j \le \sum_{k=0}^{\infty} p_{ik} z_k - \sum_{v=1}^{n-1} \sum_{k=0}^{\infty} p_{ik}^{(v)} \frac{1}{q_k} + (\frac{1}{q_0} + \lambda) \sum_{v=1}^{n-1} p_{i0}^{(v)} .$$ The series $\sum_{v=1}^{\infty} \sum_{k=0}^{\infty} p_{ik}^{(v)}/q_k$ is divergent by the minimality assumption since it is the expected time required to make an infinite number of transitions after leaving state i. For a rigorous proof see Theorem II. 19.1, Corollary 1, of [1]. But this means that $\sum_{v=1}^{\infty} p_{i0}^{(v)}$ must be divergent in order to preserve the non-negativity in (2.11). Hence, the SCMC is recurrent. To establish positive recurrence sum the inequality (2.10) for n = 2, ..., N+1. $$(2.12) \quad \sum_{n=2}^{N+1} \sum_{j=0}^{\infty} p_{ij}^{(n)} z_{j} \leq \sum_{n=1}^{N} \sum_{k=0}^{\infty} p_{ik}^{(n)} z_{k} - \sum_{n=1}^{N} \sum_{k=0}^{\infty} p_{ik}^{(n)} \frac{1}{q_{k}} + (\frac{1}{q_{0}} + \lambda) \sum_{n=1}^{N} p_{i0}^{(n)} .$$ Rearrangement and cancellation produces $$\sum_{k=0}^{\infty} \left(\sum_{n=1}^{N} p_{ik}^{(n)} \right) \frac{1}{q_k} \le \sum_{k=0}^{\infty} p_{ik}^{2} - \sum_{k=0}^{\infty} p_{ik}^{(N+1)} z_k + \left(\frac{1}{q_0} + \lambda \right) \sum_{n=1}^{N} p_{i0}^{(n)}$$ (2.13) $$\leq \sum_{k=0}^{\infty} p_{ik} z_k + (\frac{1}{q_0} + \lambda) \sum_{n=1}^{N} p_{i0}^{(n)}$$ Divide both sides of (2.13) by $\sum_{n=1}^{N} p_{1h}^{(n)}$ (which is positive for N sufficiently large) for any hell. As $N \to \infty$ Fatou's lemma gives $$(2.14) \quad \sum_{k=0}^{\infty} \left(\lim_{N \to \infty} \frac{\sum_{n=1}^{N} p_{1k}^{(n)}}{\sum_{n=1}^{N} p_{1h}^{(n)}} \right) \frac{1}{q_k} \leq \left(\frac{1}{q_0} + \lambda \right) \lim_{N \to \infty} \frac{\sum_{n=1}^{N} p_{10}^{(n)}}{\sum_{n=1}^{N} p_{1h}^{(n)}} ,$$ the right hand side reducing to a single term since $\sum_{n=1}^{\infty} p_{ih}^{(n)} = +\infty$ in a recurrent chain. These limits exist by the Doeblin ratio limit theorem and have been evaluated by Chung. For a recurrent chain (2.15) $$\lim_{N\to\infty} \frac{\sum_{n=1}^{N} p_{ik}^{(n)}}{\sum_{n=1}^{N} p_{ih}^{(n)}} = \frac{\ell^{p_{\ell k}^{*}}}{\ell^{p_{\ell h}^{*}}},$$ for any $l \in I$, where l^*_{lk} is the expected number of visits to state k between visits to state $l(l^*_{lk}) = 1$. (For reference see [1], Sec. I.9). From (2.14) and (2.15) (2.16) $$\sum_{k=0}^{\infty} {}_{k} p^{*} p_{k} \frac{1}{q_{k}} \leq (\frac{1}{q_{0}} + \lambda) {}_{k} p^{*} p_{0} < + \infty .$$ Derman [2] showed that for a recurrent chain the p^*_{ki} , i = 0,1,2,..., constitute the unique (except for a multiplicative constant) positive solution of the equations xP = x. In a recurrent chain the unique solutions of yQ = 0 and xP = x are related by $y_i = x_i/q_i$ (see Theorem 3 of [9]). Thus, by (2.16) $y_i = p^*_{ki}/q_i$ is a positive, convergent solution to yQ = 0 so the SCMC is positive recurrent (by Theorem 1 of [9]). The motivation for this theorem is clearly contained in the necessity part of the proof where (2.5) holds with equality for $z_j = m_{j0}$. That the equalities can be replaced with inequalities in the sufficiency condition is a trivial bonus of the proof. The minimality assumption is essential for the validity of the sufficiency part of the theorem. For a counter-example without it take a birth and death process with (2.17) $$\mu_0 = 0$$, $\sum_{n=0}^{\infty} \rho_n < +\infty$, $\sum_{n=0}^{\infty} \frac{1}{\lambda_n \rho_n} < +\infty$, where $\rho_n = \lambda_0 \lambda_1 \cdots \lambda_{n-1} / \mu_1 \cdots \mu_n$, $n = 1, 2, ..., \rho_0 = 1$. Such a birth and death process is explosive (see [5]). However, (2.18) $$z_{n+1} = z_1 \sum_{v=0}^{n} \frac{\lambda_0}{\lambda_v \rho_v} - \sum_{v=1}^{n} \frac{1}{\lambda_v \rho_v} \sum_{u=0}^{v} \rho_u , \qquad n = 1, 2, ...,$$ satisfies the equations $\sum_{j=0}^{\infty} q_{ij}z_j = -1$, i=1,2,..., for any z_1 . $(\sum_{j=0}^{\infty} q_{0j}z_j < +\infty \text{ holds trivially.})$ For z_1 sufficiently large z_n will be positive for all n since the negative series in (2.18) is convergent. Kingman [7] proved this theorem for bounded $\mathbf{q_i}$ by a different method. Since boundedness of the $\mathbf{q_i}$ guarantees the minimality assumption but is not necessary for it to hold, Theorem 2 would constitute an extension of Kingman's result. An application of the sufficiency condition to parallel queues can also be found in [7]. #### **BIBLIOGRAPHY** - [1] K. L. Chung, <u>Markov Chains with Stationary Transition Probabilities</u>, Springer-Verlag, Berlin, 1960. - [2] C. Derman, "A solution to a set of fundamental equations in Markov chains," Proc. Amer. Math. Soc., Vol. 5 (1954), pp. 332-334. - [3] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1950. - [4] F. G. Foster, "On the stochastic matrices associated with certain queueing processes," Ann. Math. Stat., Vol. 24 (1953), pp. 355-360. - [5] S. Karlin and J. McGregor, "The differential equations of birth-and-death processes, and the Stieltjes moment problem," <u>Trans. Amer. Math. Soc.</u>, Vol. 85 (1957), pp. 489-546. - [6] S. Karlin and J. McGregor, "The classification of birth and death processes," <u>Trans. Amer. Math. Soc.</u>, Vol. 86 (1957), pp. 366-400. - [7] J. F. C. Kingman, "Two similar queues in parallel," Ann. Math. Stat., Vol. 32 (1961), pp. 1314-1323. - [8] D. G. Kendall and G. E. H. Reuter, "The calculation of the ergodic projection for Markov chains and processes with a countable infinity of states," Acta Math., Vol. 97 (1957), pp. 103-144. - [9] R. G. Miller, Jr., "Stationarity equations in continuous time Markov chains," Technical Report No. 80 (1962), Stanford University, Contract Nonr-225 (52), (NR-342-022), accepted for publication in Trans. Amer. Math. Soc. - [10] G. E. H. Reuter, "Denumerable Markov processes and the associated contraction semi-groups on *l*," Acta Math., Vol. 97 (1957), pp. 1-46. # STANFORD UNIVERSITY TECHNICAL REPORTS DISTRIBUTION LIST CONTRACT Non-225(52) | | | CONTRACT New-225(52) | | | | |--|----|---|---|---|----| | Armed Services Technical | | Commanding Officer | | Decument Library | | | Information Agency
Arlington Hall Station
Arlington 12, Virginia | | Frankforé Arsensi | | U.S. Atomic Energy Commission
19th and Constitution Aves. N.W. | | | Arlington Hall Station | 10 | Library Branch, 0270, Bidg. 40 | | Washington 25, D. C. | 1 | | | | Bridge and Taceny Streets
Philadelphia 37, Pennsylvania | 1 | | - | | Bureau of Supplies and Accounts
Code OW | | | _ | Heedquerters
Oklahema City Air Materiel Area
United States Air Force | | | Code OW | | Cemmanding Officer
Rock Island Arsenal
Rock Island, Illinois | | Utlanden City Air Materiel Area | | | Department of the Navy
Washington 25, D. C. | 1 | Rock Island . Illinois | 1 | | | | | • | | - | Oklahema | 1 | | Head, Legistics and Mathematical
Statistics Branch
Office of Naval Research | | Commanding General
Redstone Arsenal (ORDDW-QC)
Huntsville, Alahama | | Institute of Civilaties | | | Office of Navel Research | | Huntsville . Alabama | 1 | North Carolina State College of A & E | | | Code 436 | _ | | | institute of Statistics
North Carolina State College of A & E
Raiolgh , North Carolina | 1 | | Washington 25, D. C. | 3 | Cammanding General White Sands Proving Ground (ORDBS-TS-TIB) | | | | | Commonding Offices | | (OPORS-TS-TIR) | | Jet Prepulsion Laboratory
California institute of Technology | | | Commanding Officer
Office of Naval Research | | Las Cruces, New Medice | 1 | Attn: A.J. Stoeick | | | | | 0 | | Atts: A.J. Stoelck
4800 Oak Grove Driva
Pasadona 3, California | 1 | | Navy No. 100, Fleet P. O.
New York, N. Y. | 2 | Commanding General Attn: Paul C. Con, Ord. Mission | | | • | | | • | White Sands Proving Ground
Las Cruces, New Mexico | | Librarian
The RAND Corporation
1700 Main Street | | | Commanding Officer | | Las Cruces, New Mexico | 1 | The RAMO Corporation | | | Office of Naval Research | | Commandian Consul | | 1700 Main Street
Santa Menica, Califernia | 1 | | Branch Unice | | Commanding General Attn: Technical Decuments Center | | | • | | Commanding Officer Office of Neval Research Branch Office 1000 Geory Street San Francisco 9, California | 1 | Signal Corps Engineering Laboratory Fort Measureth, New Jersey | | Library Division | | | | | Fort Monmouth, New Jersey | 1 | Naval Missile Center Command | | | Commanding Officer | | | | U.S. Mayor Missile Comer | | | Office of Neval Research
Branch Office | | Commanding General
Ordnance Weapens Command
Attn: Research Branch
Rock Island, Illinois | | Library Division
Naval Missile Center Command
U.S. Naval Missile Comier
Atha: J. L. Michel
Point Mugu, California | 1 | | 10th Floer, The John Crerar | | Attn: Research Branch | | | | | Library Sidg. | | Rock Island, Illinois | 1 | Mathematics Division | | | 10th Floer, The John Cremer
Library Bidg.
86 East Randelph Street
Chicage 1, Illinois | 1 | Commanding General | | Machanizies Dryffien
Code 5077
U.S. Naval Ordnance Tust Statlen
China Lake, California | | | | - | U.S. Army Electronic Proving Ground
Fort Huschuca, Arizona
Attn: Technical Library | | China Lake, California | 1 | | Commanding Officer | | Fort Hunchuca, Arizona | 1 | NASA | | | Commanding Officer Office of Naval Research Branch Office | | Acci: Technical Library | • | Attn: Mr. E.B. Jackson, Office
of Agre Intelligence
1724 F Street, M. W.
Washington 25, D. C. | | | 346 Breadusy | | Commander | | of Auro Intelligence | | | 346 Breadway
New York 13, N. Y. | 1 | Wright Air Development Center
Attn: ARL Tech. Library, WCRR
Wright-Patterson Air Force Base, Ohio | | 1724 F Street, W. W. | 1 | | | | Wright-Patterson Air Force Base. Ohio | 1 | | • | | Commanding Officer Dlamond Ordanso Fuse Labs. Washington 25, D. C. | | | - | National Applied Mathematics Labs.
National Bureau of Standards
Washington 25, D. C. | | | Washington 25, D. C. | 1 | Commander | | Matienal Burger of Standards | 1 | | Commanding Officer | | Western Development Division, WDSIT | | | • | | Picationy Arsenal (ORDSS-TH8)
Dever, New Jersey | _ | P.O. Box 262
Inglewood, California | 1 | Naval Inspector of Ordnance
U.S. Maval Gun Factory
Washington 25, D. C.
Attn: Mrs. C. D. Hook | | | Dover, New Jersey | 1 | Chief, Research Division | | U.S. Raval Gun Factory | | | Concending Officer | | Office of Research & Development | | Atta: Mrs. C. D. Hock | 1 | | Commending Officer
Wetertown Arsensi (OMRO)
Watertown 72, Massachusetts | _ | Office of Research & Development
Office of Chief of Staff | | | | | Watertown 72, Massachusetts | 1 | U.S. Army
Washington 25, D. C. | 1 | Office, Asst. Chief of Staff, G-4 | | | Commandian Officer | | | • | Research Branch, R & D Division
Department of the Army
Washington 25, D. C. | | | Commanding Officer Attn: W. A. Labs | | Chief, Computing Laboratory
Ballistic Research Laboratory | | Washington 25, D. C. | 1 | | Watertown Arsenal
Watertown 72, Massachusetts | 1 | Ballistic Research Laberatory Aberdeen Proving Ground, Maryland | 1 | SuperIntervient | | | | • | Canada Lianna Atania' making | - | Superintendent
U.S. Navy Postgraduate School
Monterey, California
Attn: Library | | | Commanding Officer
Watervilet Arsenal | | Director | | Monterey, California | | | Watervilet Arsenal | 1 | National Security Agency Attn: REMP-1 | | Attn: Library | 1 | | Watervilet, New Yerk | • | Fort George G. Monde, Maryland | 2 | Technical Information Officer | | | Commanding Officer | | - , , | | Neval Research Laboratory
Washington 25, D. C. | | | Atta: incaection Division | | Director of Operations | | wasnington 25, D. C. | • | | Springfield Armory
Springfield , Massachusetts | 1 | Ha., U.S. Air Force | | Technical information Service | | | | _ | Operations Analysis Div., AFOOP
Hq., U.S. Air Force
Washington 25, D. C. | 1 | Attn: Reference Branch
P.O. Bex 62 | | | Commanding Officer | | Director | | P.O. Bex 62
Oak Ridge, Tennessee | 1 | | Signal Carps Electronic Research | | Come Ica & Dormafront Bonnoch | | | • | | 9560 Technical Service Unit | | Felskilekmeni | | Technical Library Branch
Code 234 | | | Commission Virtual Signal Corps Electronic Research Unit, EDL 950 Technical Service Unit P.O. Bez 205 Mountain View, California | 1 | Corps of Engineers
1215 Washington Avenue | | U.S. Neval Ordnance Laboratory | | | meanam ven, unnama | - | Wilmette, Illinois | 1 | U.S. Havel Ordnance Laboratory Attn: Clayborn Graves Cerona, California | _ | | Commanding Officer | | Ofmanton | | Corona, California | 1 | | 7558 Technical Service Unit | | Director | | Institute for Defense Analyses | | | Willow Rus Research Conter | | Lincoln Laboratory
Lexington, Massachusetta | 1 | Communications Research Division | | | Commanding Officer
9559 Technical Service Unit
Army Llaten Group, Project Michigan
Willew Run Research Center
YpsHanti, Michigan | 1 | | | Communications Research Division
von Neumann Hall | _ | | | | Department of Mathematics
Michigan State University | | Princeton, New Jersey | -1 | | Commanding Officer Engineering Research & Development Labs. | _ | East Lansing, Michigan | 1 | | | | Engineering Research & Development Labs.
Fort Bolvoir, Virginia | 1 | | | | | | | | | | | | | Mr. Irving B. Altman
Inspection & QC Division
Office, Asst. Secretary of Defense
Room 28870, The Pentagen
Washington 25, D. C. | 1 | Professor Sciencen Kullback
Department of Statistics
George Washington University
Washington 7, D. C. | 1 | Professor L. J. Sevenge
Mathematics Department
University of Michigan
Ann Arber, Michigan | 1 | |--|---|--|-----|--|----| | Professor T. W. Anderson Department of Statistics Columbia University New York 27, New York | 1 | Professor W. H. Kruskel
Department of Statistics
The University of Chicage
Chicago, Illinois | 1 | Professor W. L. Smith
Statistics Department
University of North Carolina
Chapel Hill, North Carolina | 1 | | Professor Rebert Bechhefer Dept. of Industrial and Engineering | | Professor Eugene Lukacs
Department of Mathematics
Catholic University
Washington 15, D. C. | 1 | Dr. Milton Sobel
Sentiation Department
University of Minneada
Minneapolis, Minneada | 1 | | Sibley School of Mechanical Engineering
Cameli University
Ithaca, New York
Professor Fred. C. Andrews | 1 | Dr. Craig Magwire
2954 Winchester Way
Ranche Cordova, California | 1 | Mr. G. P. Stock
Division 5511
Sandin Corp., Sandin Base
Albuquerque, New Maxice | 1 | | Professor Fred. C. Andrews
Department of Mathematics
University of Oregon
Eugene, Oregon | 1 | Professor G. W. McElrath
Department of Mechanical Engineering
University of Minnesota
Minneapolis 14, Minnesota | 1 | Professor Donald Traget Department of Mathematics University of Gregon Eugene, Oragen | • | | Professor Z. W. Birnbaum
Department of Mathematics
University of Washington
Seattle 5, Washington | 1 | Dr. Knex T. Milisaps
Executive Director
Air Force Office of Scientific Research
Washington 25, D. C. | 1 | Eugene , Oregen Professer John W. Tubey Department of Mahhematies Princetes University Princetes, New Jersey | 1 | | Dr. David Biackwell
Department of Mathematical Sciences
University of California
Berkeley 4, California | 1 | D. E. Newman
Chief, Ind. Engr. Div. Comptroller
Hq., San Bernardino Air Matariel Area
USAF, Norton Air Ferce Base, California | 1 | Princeton, New Jersey Professor G. S. Whetson Department of Mailhometics University of Terento, Terento S., Ontario, Canada | 1 | | Professor Raiph A. Bradley
Department of Statistics
Florida State University
Taliahassee, Florida | 1 | Professor Edwin G. Olds
Department of Mathematics
College of Engineering and Sciences
Camegie Institute of Technology
Pittsburgh 13, Pennsylvania | • | Trento 5, Ontario, Canada Dr. Harry Weinparten Special Projects Office, \$P2016 Hary Department Washington 25, D. C. | 1 | | Dr. John W. Cell
Department of Mathematics
North Carolina State College
Raielgh, North Carolina | 1 | Carriege institute or secondary
Pittsburgh 13, Pennsylvania
Dr. William R. Pabet
Bureau of Weapons
Room 0306, Main Navy
Department of the Navy | 1 | | 1 | | Professor William G. Cochran
Department of Statistics
Harvard University
2 Divinity Avenue, Roses 31.2
Cambridge 38, Massachusetts | | Washington 25, D. C. | 1 | Dr. F. J. Weyl, Director
Mathematical Sciences Division
Office of March Research
Washington 25, D. C.
Dr. John Wilkes | 1 | | | 1 | Mr. Edward Paulson
72–10 41 Ave.
Woodside 77
New York, New York | 1 | Dr. John Wilkes
Office of Nevel Research, Code 200
Washington 25, D. C. | 1 | | Miss Besse B. Day
Bureau of Ships, Code 342D
Room 3210, Main Navy
Department of the Navy
Washington 25, D. C. | 1 | H. Walter Price, Chief
Reliability Branch, 750
Diamond Ordnance Fuze Laboratery
Room 105, Building 83
Washington 25, D. C. | • | Professor S. S. Wilks
Department of Mathematics
Princaton University
Princaton, New Jersey | 1 | | Dr. Walter L. Deemer, Jr.
Operations Analysis Div., DCE/O
Hg., U.S. Air Force
Washington 25, D. C. | 1 | Professor Bonald Duba | 1 | Mr. Sitas Williams
Standards Branch, Prec. Div.
Office, DC/S for Legistics
Department of the Army
Washington 25, D. C. | 1 | | Professor Cyrus Derman
Dept. of Industrial Engineering
Columbia University
New York 27, New York | 1 | Mathematics Department
University of Washington
Seattle 5, Washington
Dr. Paul Rider
Wright Air Development Center, WCRRM
Wright-Patterson A.F.B., Oile | 1 | Professor Jacob Wolfewitz
Department of Mathematics
Cornell University
Ithaca, New York | 1 | | Dr. Donald P. Gaver
Westinghouse Research Labe
Beulah Rd Churchill Bore,
Pittsburgh 35, Pa. | 1 | Wright-Patterson A.F.B., Ohie Professor Herbert Robbins Dept. of Mathematical Statistics Columbia University New York 27, New York | 1 | Mr. William W. Wolman
Code MER - Bidg. T-2 Roam C301
700 Jackson Place, N. W.
Washington 25, D. C. | 1 | | Mr. Harold Gumbel
Head, Operations Research Group
Code 01-2
Pacific Missile Rance | - | Professor Murray Rosenblatt
Department of Mathematics
Brown University | 1 | Marvin Zelon
Mathematics Research Center
U. S. Army
University of Wisconsin
Madison 6, Wisconsin | • | | Box 1
Point Mugu, California | 1 | Providence 12, Rhode Island Professor Herman Rubin Department of Statistics | 1 ' | | 1 | | Dr. Ivan Hershner
Office, Chief of Research & Dev.
U.S. Army, Research Division 3E382
Washington 25, D. C. | 1 | Michigan State University East Lansing, Michigan | 1 | Additional copies for project
leader and assistants and reserve
for future requirements | 50 | | Professor W. Hirsch
Institute of Mathematical Sciences
New York University
New York 3, New York | 1 | Professer J. S. Russtagt
College of Medicine
University of Cincinnati
Cincinnati, Ohio | 1 | | | | Mr. Eugene Hixson
Code 600.1
GSFC, NASA
Greenbeit, Meryland | 1 | Professor I. R. Savage
School of Business Administration
University of Minnesets
Minneapolis, Minneseta | 1 | | | | Professor Harold Hetaliling
Department of Statistics
University of North Carolina | - | Miss Marien M. Sandomire
2281 Ceder Street
Berkeley 9, California | 1 | | | ### JOINT SERVICES ADVISORY GROUP | Mr. Fred Frishman | | Lt. Col. John W. Querry, Chief | | |--------------------------------|---|------------------------------------|----| | Army Research Office | | Applied Mathematics Division | | | Arlington Hall Station | | Air Force Office of Scientific | | | Arlington, Virginia | ı | Research | | | | _ | Washington 25, D. C. | 1 | | Mrs. Dorothy M. Gilford | | | | | Mathematical Sciences | | Major Oliver A. Shaw, Jr. | | | Division | | Mathematics Division | | | Office of Naval Research | | Air Force Office of Scientific | | | Washington 25, D. C. | 3 | Research | | | | | Washington 25, D. C. | 2 | | Dr. Robert Lundegard | | | | | Logistics and Mathematical | | Mr. Carl L. Schaniel | | | Statistics Branch | | Code 122 | | | Office of Naval Research | | U.S. Naval Ordnance Test | | | Washington 25, D. C. | 1 | Station | | | | _ | China Lake, California | 1 | | Mr. R. H. Noyes | | | | | Inst. for Exploratory Research | | Mr. J. Weinstein | | | USASRDL | | Institute for Exploratory Research | :h | | Fort Monmouth, New Jersey | 1 | USASRDL | | | | _ | Fort Monmouth, New Jersey | 1 |